

Advances in Asset Allocation

Richard Michaud, Ph.D.

President

New Frontier

Deconstructing Black-Litterman:

How to Get the Portfolio You Already Knew You Wanted

Richard Michaud, David Esch, Robert Michaud New Frontier Advisors Boston, MA 02110

Presented to: CFA Society of Toronto June 2, 2015

Preface

- Black-Litterman (BL) superficially attractive
 - CAPM, market equilibrium, Bayesian, reverse returns
- CFA teaches BL and Michaud
 - Competing alternatives for solving Markowitz
- BL taught and used for 20 years and counting
 - Academics, professional journals, many 100s billions AUM
- NFA conclusions
 - BL is no better than Markowitz
 - BL possesses serious mathematical, statistical, financial errors
 - It can't be recommend for practice
 - Implications for CFA curriculum
 - Represents a financial enigma

Overview

- Markowitz optimization promise and limitations
- Black-Litterman (BL) proposal to solve Markowitz
 - Mathematical BL framework analysis
 - Illustrate BL
 - Compare BL to Markowitz and Michaud optimization
- Additional BL limitations
- Conclude

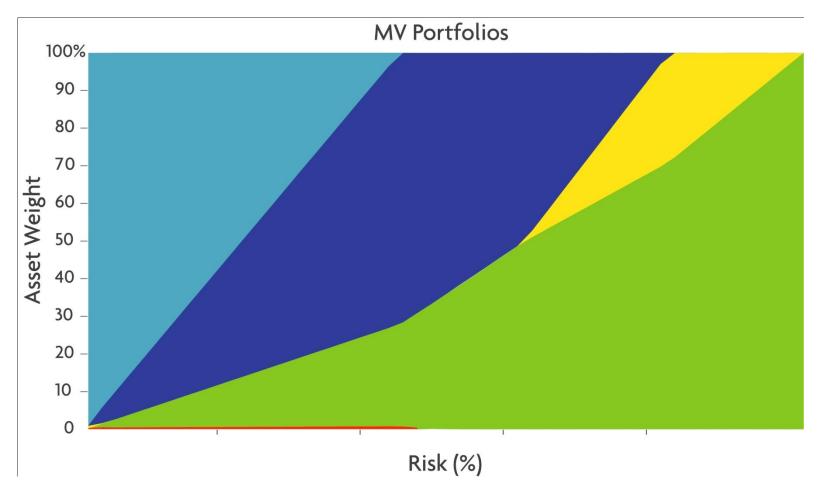
Markowitz Mean-Variance (MV) Optimization

- Seminal paper published March 1952
 - Sixty years later often not well understood
 - No normal distribution or specialized utility required
- Markowitz objective
 - Mathematical framework describing investor behavior
- Need to model
 - Pricing reflects expectation of return with vague notion of risk.
 - Well diversified institutional portfolios that vary by risk level
- Markowitz insight:
 - Sign constrained MV optimization consistent investor behavior
 - No need of fat tails, tail risk, copulas, black swans, etc.
 - A convenient framework for computing optimal portfolios consistent with how securities are priced in many capital markets

Markowitz Mean-Variance (MV) Optimization

- A theoretical standard for defining portfolio optimality
 - Central to modern finance and investment theory
- But practice is very different
 - Very unstable
 - small changes in inputs lead to large optimized changes
 - Poor diversification, hard to manage, poor performance
- Ten asset classes input to MV efficient frontier
 - Money market, intermediate fixed, long-term fixed, High yield, small cap value, small cap growth, large cap value, large cap growth, international equity, real estate
 - Thirty years of historical monthly returns

MV Efficient Frontier Composition Map: 10 Asset Example



Asset Allocation In Practice

- Manage the inputs
- Constrain the solution
- Engineer "acceptable" portfolios
- Why bother optimizations (Michaud 1989)
 - Managers/consultants ignore MV optimization
 - Disguised active management

Black-Litterman Optimization: Proposal to Solve MV Limitations

Black-Litterman (BL) Optimization

- Assume a "market" portfolio in "equilibrium" on inequality unconstrained MV frontier
 - Implies max Sharpe ratio (MSR) optimal
- Estimate covariance matrix and "reverse" optimize to estimate returns
 - "Implied" or "reverse" returns make market optimal
- Overlay reverse returns with investor views (Bayes)
- Compute the BL optimal portfolio

BL Potential Benefits

- Result is generally easy to understand and stable
 - BL optimal typically close to market portfolio
- Reflects how many traditional managers and investment committees think
 - Start with a "good" portfolio and tweak it

Black-Litterman Mathematical Framework

Assumptions and Notation

- M: Assume "Market" portfolio in equilibrium
 - MSR on inequality unconstrained MV frontier
- ∑: Covariance matrix typically estimated from data
 - No estimation error assumed
- Usual unconstrained MSR optimization formula: X=∑⁻¹µ
 - µ is estimated return, X is the MSR optimal portfolio
- Inverse or implied returns formula: Π=∑M:
- Equilibrium returns implicitly assume N(Π,τ∑) distribution
 - But Π is a point estimate of what?
 - τ∑ does not characterize information in Π
 - Setting for scale parameter τ unclear

Assumptions and Notation

- P: collection of view portfolios
- $P\mu \sim N(\nu, \Omega)$: Investor views
- Information from separate normal distributions (views and equilibrium returns) are combined into one with Theil-Goldberger (1961) formula

Black-Litterman Mean with Views

Combined means μ_{BL}

$$=\Pi + V$$

$$= \Pi + \Sigma P' \left(\frac{\Omega}{\tau} + P\Sigma P'\right)^{-1} (\nu - P\Pi)$$

 Note: the ad hoc τ parameter scales relative importance of views in the Theil-Goldberger formula

Black-Litterman Portfolio

$$\Sigma^{-1}\mu_{BL} = M + P' \left(\frac{\Omega}{\tau} + P\Sigma P'\right)^{-1} (\nu - P\Pi)$$

$$N \times 1$$

$$N \times 1$$

- Deviates from market weights only assets with views
- Temptation to change results by changing τ

Discussion

- Solely a function of market portfolio and views
- Σ is only source of data in formula
 - Essentially no risk-return information from data!
- Implied returns designed solely for MSR point
 - Extension to full efficient frontier gives unpredictable/unstable results
- Extension to constraints illustrated in next sections
- Inconsistent with principles of good data analysis or scientific method

Illustrating Black-Litterman

Start with Risk-Return Estimates

Example: Michaud (1998, Ch. 2)

Asset Name	Mean	Std Dev	Euro Bonds	US Bonds	Canada	France	Germany	Japan	UK	US
Euro Bonds	3.22%	5.40%	1.00	0.92	0.33	0.26	0.28	0.16	0.29	0.42
US Bonds	2.96%	6.98%	0.92	1.00	0.26	0.22	0.27	0.14	0.25	0.36
Canada	4.64%	19.04%	0.33	0.26	1.00	0.41	0.30	0.25	0.58	0.71
France	10.53%	24.36%	0.26	0.22	0.41	1.00	0.62	0.42	0.54	0.44
Germany	6.36%	21.55%	0.28	0.27	0.30	0.62	1.00	0.35	0.48	0.34
Japan	10.53%	24.37%	0.16	0.14	0.25	0.42	0.35	1.00	0.40	0.22
UK	9.53%	20.83%	0.29	0.25	0.58	0.54	0.48	0.40	1.00	0.56
US	8.53%	14.89%	0.42	0.36	0.71	0.44	0.34	0.22	0.56	1.00

Define a "Market" Portfolio

Example: 60/40 Equal Weighting of Bonds and US and non-US equities

Asset Name	Market Portfolio	Mean	Standard Deviation	
Euro Bonds	20.0%	3.2%	5.4%	
US Bonds	20.0%	3.0%	7.0%	
Canada	6.0%	4.6%	19.0%	
France	6.0%	10.5%	24.4%	
Germany	6.0%	6.4%	21.5%	
Japan	6.0%	10.5%	24.4%	
UK	6.0%	9.5%	20.8%	
US	30.0%	8.5%	14.9%	

BL Means

Compute "Implied" Returns that make Market MV Optimal

Asset Name	Market Portfolio	Original Means	Standard Deviation	BL Mean
Euro Bonds	20.0%	3.2%	5.4%	2.2%
US Bonds	20.0%	3.0%	3.0% 7.0%	
Canada	6.0%	4.6%	19.0%	9.2%
France	6.0%	10.5%	24.4%	10.9%
Germany	6.0%	6.4%	21.5%	8.6%
Japan	6.0%	10.5%	24.4%	7.8%
UK	6.0%	9.5%	20.8%	10.0%
US	30.0%	8.5%	14.9%	8.5%

Comment On BL Means

- Estimation error issues are ignored
 - No way to check how close market is to MSR optimality
 - Estimation errors in covariance ignored

Add Investor Views

Add Investor Views

Example: US vs. European Equities

Asset Name	Market	Mean	Std Dev	BL Mean	Investor
					Views
Euro Bonds	20.0%	3.2%	5.4%	2.2%	0.0%
US Bonds	20.0%	3.0%	7.0%	2.6%	0.0%
Canada	6.0%	4.6%	19.0%	9.2%	0.0%
France	6.0%	10.5%	24.4%	10.9%	-40.0%
Germany	6.0%	6.4%	21.5%	8.6%	-30.0%
Japan	6.0%	10.5%	24.4%	7.8%	0.0%
UK	6.0%	9.5%	20.8%	10.0%	-30.0%
US	30.0%	8.5%	14.9%	8.5%	100.0%
			View Prior	Return	5.0%
			View Prior Std Dev		5.0%

BL View Means Formula

- Uses Theil-Goldberger (1961) "contrast" procedure
 - Bayes method for adding exogenous information
 - Applicable with any risk-return estimates
 - Powerful asset management tool
 - Part of our software and investment process

BL View Means

View Modifies BL Means

Asset Name	Market Portfolio	Mean	Standard Deviation	BL Mean	BL View Mean	Investor Views
Euro Bonds	20.0%	3.2%	5.4%	2.2%	2.2%	0.0%
US Bonds	20.0%	3.0%	7.0%	2.6%	2.6%	0.0%
Canada	6.0%	4.6%	19.0%	9.2%	9.6%	0.0%
France	6.0%	10.5%	24.4%	10.9%	5.5%	-40.0%
Germany	6.0%	6.4%	21.5%	8.6%	3.8%	-30.0%
Japan	6.0%	10.5%	24.4%	7.8%	4.9%	0.0%
UK	6.0%	9.5%	20.8%	10.0%	7.3%	-30.0%
US	30.0%	8.5%	14.9%	8.5%	10.0%	100.0%
					View Return	5.0%
					View Std Dev	5.0%
					Data Return	-1.5%
					Data Std Dev	16.7%

BL Optimal Portfolio Relative to Views

Asset Name	Market	BL View	BL	
		Means	Optimal	
Euro Bonds	20.0%	2.2%	20.0%	
US Bonds	20.0%	2.6%	20.0%	
Canada	6.0%	9.6%	6.0%	
France	6.0%	5.5%	-6.5%	
Germany	6.0%	3.8%	-3.4%	
Japan	6.0%	4.9%	6.0%	
UK	6.0%	7.3%	-3.4%	
US	30.0%	10.0%	61.2%	
Return	6.1%		7.2%	
Risk	9.6%		10.3%	

Black-Litterman τ-Adjustment

The τ-adjustment for BL Optimal

- BL introduce τ-adjustment of investor views
 - Allows computation of sign constrained BL optimal portfolios
- Define BL* the least sign constrained BL optimal portfolio
- Need to compute the value of τ: 0 ≤ τ ≤ 1
- Impact is to reduce certainty in investor views
- Reducing certainty in views implies BL optimal closer to M
- In this case the τ value is 0.07027888706
- Implies the view has a 18.8607% uncertainty std dev
- BL* portfolio can be computed directly with view modified means

BL* Sign Constrained Optimal: τ-Adjusted Inputs

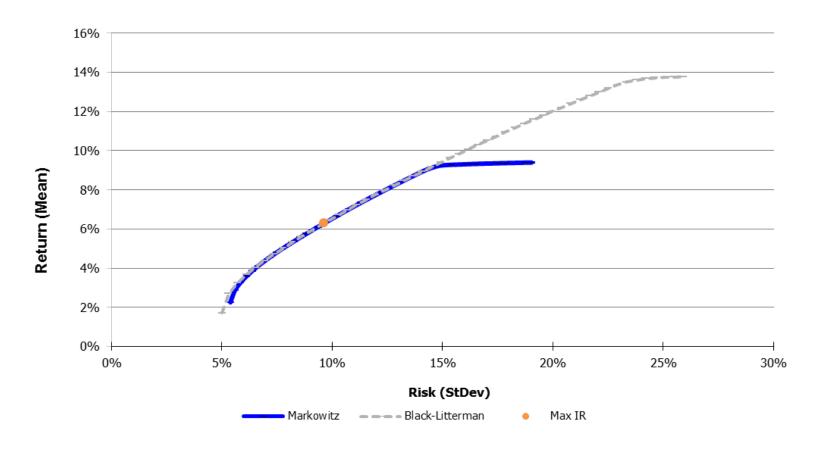
Asset Name	Market	BL View	BL	BL*	BL*
		Means	Optimal	Means	Optimal
Euro Bonds	20.0%	2.2%	20.0%	2.2%	20.0%
US Bonds	20.0%	2.6%	20.0%	2.6%	20.0%
Canada	6.0%	9.6%	6.0%	9.4%	6.0%
France	6.0%	5.5%	-6.5%	8.3%	0.0%
Germany	6.0%	3.8%	-3.4%	6.3%	1.5%
Japan	6.0%	4.9%	6.0%	6.4%	6.0%
UK	6.0%	7.3%	-3.4%	8.7%	1.5%
US	30.0%	10.0%	61.2%	9.2%	45.0%
Return	6.1%		7.2%		6.2%
Risk	9.6%		10.3%		9.6%

Black-Litterman and Markowitz

BL* is Markowitz

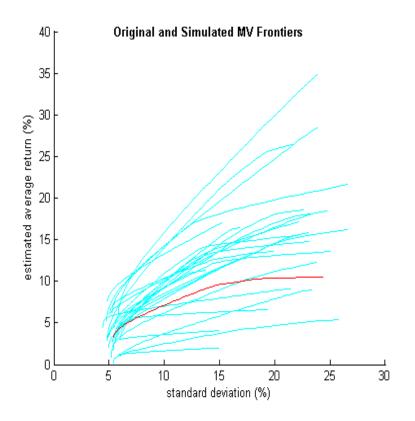
- BL* is a sign constrained MSR optimal portfolio on the unconstrained MV efficient frontier
- Compute a Markowitz MSR sign constrained optimal portfolio
 - BL* means and ∑
 - Same inputs, same criteria as BL*
 - Same portfolio!
- BL* just a point on the Markowitz efficient frontier
 - BL* is nothing new!
 - BL* inherits all of Markowitz optimization limitations!
 - Input estimation error and instability unresolved

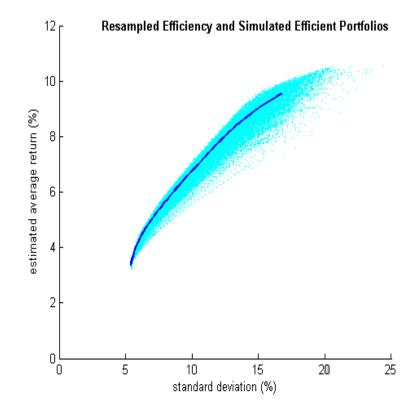
Black-Litterman and Markowitz Frontiers BL* Inputs



Michaud Optimization: Patented Alternative to Markowitz

MV Resampling and Michaud Frontier





Compare BL* to Michaud MSR

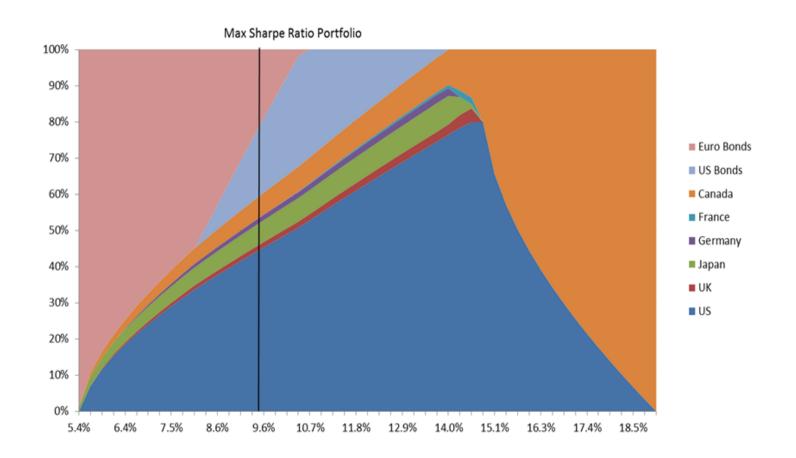
BL* vs. Markowitz vs. Michaud

- Compute Michaud efficient frontier with same inputs as BL*
- Compare BL*/Markowitz MSR vs. Michaud MSR
- For sign constrained optimization
 - No reason to focus only on MSR optimal
 - Compare BL*/Markowitz vs. Michaud frontier allocations
 - Michaud better diversified across efficient frontier

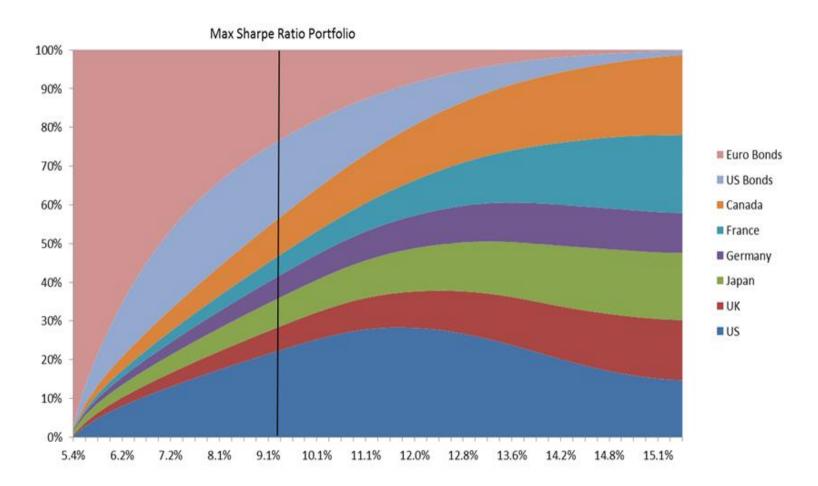
MSR BL*/Markowitz vs. Michaud

Asset Name	Market	BL*/Markowitz	Michaud
Euro Bonds	20.0%	20.0%	23.0%
US Bonds	20.0%	20.0%	19.9%
Canada	6.0%	6.0%	9.9%
France	6.0%	0.0%	4.3%
Germany	6.0%	1.5%	4.7%
Japan	6.0%	6.0%	6.6%
UK	6.0%	1.5%	5.4%
us	30.0%	45.0%	26.2%
Return	6.1%	6.2%	5.9%
Risk	9.6%	9.6%	9.3%

BL * Inputs Sign Constrained Markowitz Frontier Composition Map



BL* Inputs Sign Constrained Michaud Frontier Composition Map



Additional BL Issues

Market Assumption Drives BL

- Equilibrium market is unknown and indefinable
- BL "market" portfolio has much unknown estimation error
- Implied returns makes any crazy portfolio MV "optimal"
- No constraint on investment reality
- Very dangerous investing
- Essentially ignoring contact with capital market reality
- Does not resolve estimation error in MV optimization

BL is Unconstrained MV Optimization

- Jobson and Korkie (1980, 1981) prove that MSR portfolio on the unconstrained MV efficient frontier has little, if any, investment value
 - Much worse than equal weighting
- Regulatory restrictions and institutional limitations reflect constraints that are real world considerations in defining optimality
 - Proper linear constraints necessary condition for defining effective portfolio optimality
- Markowitz (2005) demonstrates linear constraints alter the validity of tools and theorems of modern finance

BL ignores Investor Risk Aversion

- BL computes a single optimal portfolio
- Wide consensus that choice of portfolio risk the single most important investment decision
- BL portfolio risk often investor inappropriate
- Efficient frontiers required to provide a range of optimal risk habitats

Statistical Foundations of BL Returns

- No standard statistical procedure based on inference from data produces the implied returns as estimates for portfolio expectations
- τ-adjustment compromises the character of an exogenous prior
 - Exogenous prior should not be changed
 - BL a major departure from rigorous Bayesian analysis
- Implied returns not investment useful
 - Returns not unique or on same scale as forecast returns
 - Implied means are estimated by covariances which have no information on the means by definition
 - Covariance has a great deal of estimation error
 - Covariance simulations show implied returns all over the map
 - Usual meanings of mean and variance have been lost

Summary

Black-Litterman propose to solve MV optimization instability

However...

- Ad hoc "market" assumption drives process
- Much estimation error of true market portfolio likely
- Estimation error in covariance matrix ignored
- BL* no different than Markowitz for same inputs
- Inherits instability of Markowitz optimization
- Ignores investor risk habitat preferences
- Michaud optimization superior diversification for same inputs

Conclusion

- BL optimization
 - No different from Markowitz in sign constrained case
 - Heir to Jobson-Korkie problems in unconstrained case
 - Inconsistent with modern statistical inference
 - Disconnected from capital market reality
 - Promotes very dangerous investing practices
- Effective asset management requires
 - Inequality constrained optimization
 - Frontier of efficient risk managed portfolios
 - Input estimation consistent with modern inference
 - Estimation error effective optimization

Thank You

New Frontier Advisors, LLC Boston, MA 02110 www.newfrontieradvisors.com

Advance professionally and stay current with industry trends... Be the one investors seek;

Renew your membership

www.cfainstitute.org/renew

Connect with us!

Linked in CFA Society Toronto

For more information on CFA Society Toronto, please visit: